Sheet 4

Q1:-

- (i) Let (X, d) be a metric space and $(x_n)_{n \in \mathbb{N}} \subset X$ be a sequence. State precisely what it means that the sequence (x_n) converges to $x \in X$ in (X, d).
- (ii) $(x_n)_{n \in \mathbb{N}} \subset X$ be a sequence that converges to $x \in X$ and $(y_n)_{n \in \mathbb{N}} \subset X$ be another sequence that also converges to x. Prove that

$$\lim_{n\to\infty}d(x_n,y_n)=0.$$

- Q2:- In the Euclidean space \mathbb{R}^2 , sketch first several elements of the sequences and find their limits (if exist):
 - (i) $\lim_{n\to\infty}(\frac{1}{n^2},\frac{1}{n}).$

(ii)
$$\lim_{n \to \infty} (n, \frac{1}{n^2}).$$

- (iii) $\lim_{n \to \infty} (\cos(\pi/n), \sin(\pi/n)).$ (iv) $\lim_{n \to \infty} (\sin(\pi n), \cos(\pi n)).$

Q3:- In the Euclidean space \mathbb{R}^4 find the following limit.

$$\lim_{n \to \infty} \left(\frac{n^2 - 3}{2n^2 + 1}, \frac{1}{n} \cos(n), \frac{e^{-n}}{n+1}, \sqrt{\frac{n^3 + 3n + 1}{4n^3 + n + 1}} \right)$$

Q4:- Let (\mathbb{R}^N, d_1) be a metric. A sequence

$$(x^{(n)})_{n \in \mathbb{N}} = (x_1^{(n)}, x_2^{(n)}, \dots, x_N^{(n)})_{n \in \mathbb{N}}$$

converges in \mathbb{R}^N to the limit $x = (x_1, x_2, ..., x_N)$.

Q5:- Let (\mathbb{R}^N, d_∞) be a metric. A sequence

$$(x^{(n)})_{n \in \mathbb{N}} = (x_1^{(n)}, x_2^{(n)}, \dots, x_N^{(n)})_{n \in \mathbb{N}}$$

converges in \mathbb{R}^N to the limit $x = (x_1, x_2, ..., x_N)$.

Q6:- In the remark 4.2.2 Show that the statements (a), (b) and (c) are indeed equivalent.