Sheet 4

Q1:-
(i) Let (X, d) be a metric space and $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ be a sequence. State precisely what it means that the sequence $\left(x_{n}\right)$ converges to $x \in X$ in (X, d).
(ii) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ be a sequence that converges to $x \in X$ and $\left(\mathrm{y}_{n}\right)_{n \in \mathbb{N}} \subset X$ be another sequence that also converges to x. Prove that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

Q2:- In the Euclidean space \mathbb{R}^{2}, sketch first several elements of the sequences and find their limits (if exist):
(i) $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}, \frac{1}{n}\right)$.
(ii) $\lim _{n \rightarrow \infty}\left(n, \frac{1}{n^{2}}\right)$.
(iii) $\lim _{n \rightarrow \infty}(\cos (\pi / n), \sin (\pi / n))$.
(iv) $\lim _{n \rightarrow \infty}(\sin (\pi n), \cos (\pi n))$.

Q3:- In the Euclidean space \mathbb{R}^{4} find the following limit.

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{2}-3}{2 n^{2}+1}, \frac{1}{n} \cos (n), \frac{e^{-n}}{n+1}, \sqrt{\frac{n^{3}+3 n+1}{4 n^{3}+n+1}}\right)
$$

Q4:- Let $\left(\mathbb{R}^{N}, d_{1}\right)$ be a metric . A sequence

$$
\left(x^{(n)}\right)_{n \in \mathbb{N}}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{N}^{(n)}\right)_{n \in \mathbb{N}}
$$

converges in \mathbb{R}^{N} to the limit $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
Q5:- Let $\left(\mathbb{R}^{N}, d_{\infty}\right)$ be a metric . A sequence

$$
\left(x^{(n)}\right)_{n \in \mathbb{N}}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{N}^{(n)}\right)_{n \in \mathbb{N}}
$$

converges in \mathbb{R}^{N} to the limit $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
Q6:- In the remark 4.2.2 Show that the statements (a), (b) and (c) are indeed equivalent.

